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Abstract. We have studied a system composed by two endohedral fullerene molecules. We have found that
this system can be used as good candidate for the realization of quantum gates. Each of these molecules
encapsules an atom carrying a spin, therefore they interact through the spin dipole interaction. We show
that a phase gate can be realized if we apply static and time dependent magnetic fields on each encased
spin. We have evaluated the operational time of a π-phase gate, which is of the order of ns. We made a
comparison between the theoretical estimation of the gate time and the experimental decoherence time for
each spin. The comparison shows that the spin relaxation time is much larger than the π-gate operational
time. Therefore, this indicates that, during the decoherence time, it is possible to perform some thousands
of quantum computational operations. Moreover, through the study of concurrence, we get very good
results for the entanglement degree of the two-qubit system. This finding opens a new avenue for the
realization of quantum computers.

PACS. 03.67.-a Quantum information – 03.67.Lx Quantum computation – 61.48.+c Fullerenes
and fullerene-related materials

1 Introduction

During recent years there is a strong progress in model-
ing physical realizations of a quantum computer. Many
quantum physical systems have been investigated for the
realization of quantum gates. The most remarkable stud-
ies were related to systems associated to Quantum Optics
Ion Traps, to Quantum Electrodynamics in Optical Cav-
ities and to Nuclear Magnetic Resonance. All these ex-
periments are aimed to realize a quantum gate. The first
type of experiments is based on trapping ions in electro-
magnetic traps, where the ions, which encode the qubit
in the charge degrees of freedom, are subjected to the
mutual electrostatic interaction and to a state selective
displacement generated by an external state dependent
force [1–4]. Cavity quantum electrodynamics (QED) tech-
niques are based on the coherent interaction of a qubit,
generally represented by an atom or semiconductor dot
system, with a single mode or a few modes of the electro-
magnetic field inside a cavity. Depending on the particular
system, the qubit can be represented by the polarization
states of a single photon or by two excited states of an
atom. Although cavity QED experiments are very promis-
ing, they have been accomplished for few qubits [5–8].
In the third experiment, nuclear spins represent qubits.
These spins can be manipulated using nuclear magnetic
resonance techniques, and through the study of the quan-
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tum behavior of spins, quantum operations are realized.
However, the number of spins which can be collected in
a system is very limited, and this forbids the building up
of a scalable quantum computer [9–12]. From the study of
such systems, we learn that the decoherence phenomenon
is the main issue which prevents the realization of quan-
tum gates.

Here we will focus on a physical systems, which will
be able to produce a realistic quantum gate. The basic
elements of our system are fullerene molecules with en-
capsulated atoms or ions, which are called buckyballs or
endohedral fullerenes. Each of the trapped atoms carries a
spin. This spin, associated with electronic degrees of free-
dom, encodes the qubit. It has been shown [13], that these
endohedral systems provide a long lifetime for the trapped
spins and that the fullerene molecules represent a good
sheltering environment for the very sensible spins trapped
inside. These endohedral systems are typically character-
ized by two relaxation times. The first is T1, which is due
to the interactions between a spin and the surrounding
environment. The second one is T2 and it is due to the
dipolar interaction between the qubit encoding spin and
the surrounding endohedral spins randomly distributed in
the sample. While T1 is dependent on temperature, T2 is
practically independent of it. The experimental measure
of the two relaxation times shows that T1 increases with
decreasing temperature from about 100 µs at T = 300 K
to several seconds below T = 5 K, and that the value
of the other relaxation time, T2, remains constant, that
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Fig. 1. The schematic picture of the peapod: a nanotube filled
with four endohedrals.

is T2 � 20 µs [14,15]. In comparison with T2 the value of
T1 is very large, therefore the system decoherence is deter-
mined by the spin-spin relaxation processes. It is supposed
that the value of T2 can be increased, if it will be possible
to design a careful experimental architecture, which could
screen the interaction of the spins with the surrounding
magnetic moments. It should be possible to reduce the re-
laxation time of the system due to the random spin-spin
interactions, if we consider a system composed by arrays
of endohedrals encapsulated in a nanotube [16], this sys-
tem is also called as peapod, see Figure 1, or considering
buckyballs embedded on a substrate. These should be reli-
able systems for the realization of quantum gates. In such
architectures the decoherence time for each encapsulated
spin should be longer.

Quantum computing through the study of doped fulle-
rene systems has been investigated in many works [17–21].
Although we have followed many ideas suggested in these
previous papers, we consider a different approach for the
realization of quantum gates.

Our study is focused on a system composed by two
buckyballs. Our aim is the realization of a quantum
π-gate, which is a generalization of the phase gate, this will
be treated in Section 3. To perform the π-gate, we need to
know the time evolution of the coefficients of the standard
computational basis states over which we expand the wave
function of our system. The two particle phases are eval-
uated through the numerical solution of the Schrödinger
equation, see Sections 5–6. We have used two approaches:
a time independent Hamiltonian, see Section 5, and a time
dependent one, see Section 6. The main result of our study
is the gate time, that is the time required by the system
in order to perform the π-gate. The values obtained are
around τ � 1× 10−8 s, which is a few orders smaller than
the shortest relaxation time, T2. From the comparison of
the gate time, τ , to the relaxation time, T2, we get that it
is theoretically possible to realize some thousands of basic
gate operations before the system decoheres. We have also
checked the reliability of our gate through the analysis of
the concurrence of the two-qubit state, see Section 4. The
best value for the concurrence is obtained in the case of a
time dependent Hamiltonian, while the gate time is nearly
the same in both cases.

2 Physical features of the system

The system under consideration is composed by two inter-
acting buckyballs, see Figure 2. Several experimental and
theoretical studies on buckyballs [13,17,22–25], show that

Fig. 2. Our system: two interacting buckyballs.

many different types of atoms can be encased in fullerenes
molecules. However, in most of the studied endohedral
fullerenes, there is a charge transfer from the encapsulated
atom to the fullerene cage, with a resulting considerable
alteration of the electronic properties of the cage. This
is not the case for group V encased atoms. These atoms
reside just at the center of the fullerene molecule, there-
fore there is no hybrididazion of the electron cloud of the
encased atom and there is no Coulomb interaction with
the fullerene cage. In particular, the most promising en-
dohedral molecule should be the N@C60, which is charac-
terized by many interesting chemical-physical properties.
Following references [13,17,25], experiments and theoreti-
cal calculations suggest that there is a repulsive exchange
interaction between the fullerene and the electronic cloud
of the encapsulated atom. The electrons in the cloud of
the encased nitrogen are tighter bound than in a free ni-
trogen atom, which allow the encased nitrogen to be less
reactive even at room temperature. These results, together
with the location of the nitrogen atom in the central site,
suggest that in N@C60 the nitrogen can be considered
as an independent particle, with all the properties of the
free atom. Since any charge interaction is screened, the
fullerene cage does not take any part in the interaction
process and it can be considered just as a trap for the ni-
trogen atom. Therefore, the only physical quantity of in-
terest is the spin of the trapped particle. A nitrogen atom
can be effectively described as a 3/2-spin particle. This
spin is associated with the electronic degrees of freedom.
Taking into account also the nuclear spin, which is 1/2
for the N@C60, the number of relevant degrees of freedom
will be not increased [26]. We will consider a more simple
model assuming that the encased atoms are described as
1/2-spin particles. In absence of any mutual interaction
and without any applied magnetic field, the energy lev-
els associated with these spin particles are degenerate. If
we apply a static magnetic field, this degeneracy is lifted.
As a result, due to the Zeeman effect, a two level system
arises for each 1/2-spin particle. Each of these two levels
encodes the qubit. The spin-up component, ms = +1/2,
encodes the computational basis state |1〉, and the spin-
down component, ms = −1/2, represents the state |0〉.

3 Gate operation: the phase gate

Quantum computers operate with the use of Quantum
Gates. Quantum gates are defined as fundamental quan-
tum computational operations. They are presented as uni-
tary transformations, which act on the quantum states,
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which describe the qubits. Therefore a quantum computer
must operate with the use of many quantum gates. The
simplest gates are the single-qubit gates. Since our system
is composed by two qubits, we will consider a two-qubit
quantum gate. One of the most important quantum gates
is the Universal Two-Qubit Quantum Gate [12], which is
called the CNOT-gate. The CNOT operation is defined
by the following four by four unitary matrix

UCNOT =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠ , (1)

and its action over the computational basis states reads:

|00〉 → |00〉;
|01〉 → |01〉;
|10〉 → |11〉;
|11〉 → |10〉.

(2)

The CNOT gate is given by the composition of a single-
qubit Hadamard gate followed by a two-qubit π-gate, fi-
nally followed by another single-qubit Hadamard gate.
The representation of the Hadamard gate in the Bloch
sphere is a π/2 rotation about the y-axis, followed by a
reflection of the x-y plane. In this paper we will focus on
the realization of the two-qubit π-gate. It is a particular
choice of the general phase gate, represented by the fol-
lowing matrix

G =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eıϑ

⎞
⎟⎟⎟⎠ , (3)

and its action on the computational basis states is the
following:

|00〉 → |00〉 (4)

|01〉 → |01〉 (5)

|10〉 → |10〉 (6)

|11〉 → eıϑ|11〉. (7)

When ϑ = ±π, the resulting quantum gate is called a
π-gate. In general, the time evolution of the four states
of the standard computational basis can be described as
follows:

|00〉 → eiφ00 |00〉
|01〉 → eiφ01 |01〉
|10〉 → eiφ10 |10〉
|11〉 → eiφ11 |11〉.

(8)

In order to obtain the action of the ideal quantum phase
gate, equations (4–7), see reference [4], we have to apply
the following local operator:

Ŝ = Ŝ1 ⊗ Ŝ2, (9)

where

Ŝ1 = |0〉1〈0|eıs0
1 + |1〉1〈1|eıs1

1 (10)

Ŝ2 = |0〉2〈0|eıs0
2 + |1〉2〈1|eıs1

2 (11)

and the phases s01, s
1
1, s

0
2, s

1
2 are defined as follows:

s01 = −φ00/2 (12)
s11 = −φ10 + φ00/2 (13)
s02 = −φ00/2 (14)
s12 = −φ01 + φ00/2. (15)

After a straightforward calculation we obtain the desirable
phase:

ϑ = φ11 − φ10 − φ01 + φ00. (16)

In our system, in order to realize a π-gate, we need to know
the time evolution of the wave function. The time evolved
wave function, expanded on the standard computational
basis, is given by the following equation:

|ψ(t)〉 = c1(t)|00〉+ c2(t)|01〉+ c3(t)|10〉+ c4(t)|11〉. (17)

Each coefficient ci(t), i = 1, ..., 4, is a complex number,
whose phase, arranged as in equation (16), is used for the
realization of the π-gate.

4 Concurrence

When we consider a 1/2-spin particle as the encoding sys-
tem for the qubit, it may incur to a spin-flip process. This
phenomenon consists in the swapping between the spin-up
and spin-down components

|0〉 → |1〉, (18)
|1〉 → |0〉. (19)

If we consider the two-qubit state, known as EPR pair,

|00〉 + |11〉√
2

, (20)

we can see that it is unaffected by the spin-flip of both
qubits. This state, for this feature, is called maximally
entangled. Therefore, we can define the entanglement as
the property of quantum states, which shows if the state is
good for carrying quantum information. The most entan-
gled a quantum state is, the most reliable it is for trans-
ferring quantum information. In our study we have con-
sidered the concurrence, see reference [27], as a measure
of the entanglement of the state describing the two-qubit
system. A pure state of two particles is called entangled
if it cannot be factorisable, that is it cannot be written as
the direct product of the states describing each particle.
A mixed state is entangled if it cannot be represented as
a mixture of factorisable pure states. In this section we
will refer to the entanglement of formation, which quanti-
fies the resources needed for the creation of an entangled
state. For a complete treatment about the entanglement of
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formation of pure and mixed states see references [28,29].
The entanglement of formation of a quantum state can
be evaluated through the concurrence [27]. Since the state
describing our system is a pure state, the degree of en-
tanglement of our system can be quantified through the
definition of the concurrence for a pure state [27], which
is defined by

C(ψ) = |〈ψ|ψ̃〉|, (21)

where |ψ̃〉 is the spin-flipped state of system. The spin-
flip transformation, which for a 1/2-spin particle is the
standard time reversal transformation [30], is defined as
follows

|ψ̃〉 = σ̂y|ψ∗〉, (22)

where σ̂y is the Pauli y-matrix and |ψ∗〉 is the complex
conjugate of |ψ〉. The entanglement, see [27], is defined as
a function of concurrence, through the following equation

E(ψ) = f(C(ψ)), (23)

where function f(C(ψ)) is given by

f(C(ψ)) = h

(
1 +

√
1 − C(ψ)2

2

)
, (24)

h(x) = −x log2 x− (1 − x) log2(1 − x), (25)

where

x =
1 +

√
1 − C(ψ)2

2
. (26)

Function h(x) can be seen as the entropy, which measures
the physical resources needed to store information [12].
Function f(C(ψ)) increases monotonically from 0 to 1 as
C(ψ) ranges from 0 to 1. Therefore, the concurrence can
be considered as a measure of the entanglement.

The state describing our two-qubit system, written as
a superposition of the standard two-qubit computational
basis states, is given by

|ψ〉 = c1|00〉 + c2|01〉 + c3|10〉 + c4|11〉. (27)

Following equation (22), the spin-flip transformation over
the state (27) gives

|ψ̃〉 = −c∗1|00〉 + c∗2|01〉 + c∗3|10〉 − c∗4|11〉. (28)

Finally, we obtain the concurrence of our system, see
equation (21), by performing the state product between
states (27) and (28). The normalized concurrence of the
system is given by the following equation

C(ψ) =
2|c∗2c∗3 − c∗1c∗4|

|c1|2 + |c2|2 + |c3|2 + |c4|2 . (29)

The result obtained in equation (29) will be used to eval-
uate the concurrence, i.e. the degree of entanglement of
our two-qubit system, arising during the time evolution
which leads to the π-gate. When the concurrence related
to a wave function reaches its maximum value, the state is
maximally entangled. Therefore, at the end of the gate op-
eration we require that the concurrence of the wave func-
tion of the system reaches a value close to its maximum.

Fig. 3. Schematic arrangement of the physical apparatus for
the realization of a magnetic field gradient.

5 Phase gate: time independent case

5.1 Preliminary set-up

Our system is composed by two spins, which interact with
a static magnetic field. Applying a static magnetic field
oriented in the z-direction, for the Zeeman effect, we get
the splitting of the spin z-component into the spin-up and
spin-down components. The energy difference between the
two levels give the resonance frequency of the particle.
However, when we apply a static magnetic field on the
whole sample, all the particles will have the same reso-
nance frequency. To perform manipulations on each buck-
yball, we need to be able to distinguish each of them.
This setup leads to the most relevant experimental dis-
advantage for systems composed by arrays of buckyballs,
which is the difficulty in the individual addressing of each
qubit particle. This problem can be overcome with the use
of external field gradients, which can shift the electronic
resonance frequency of the qubit-encoding spins [18,20].
Magnetic field gradients can be generated by considering
wires through which flows current. If we place two parallel
wires outside our two buckyball system, it is generated an
additional magnetic field in the space between the wires,
Figure 3. Following a paper by Groth et al. [31], with the
help of atom chip technology, wires with a high current
density can be built. The magnetic field amplitude gener-
ated by the two wires is given by

Bg =
µ0

2π
I

(
1

x+ ρ+ d/2
+

1
x− ρ− d/2

)
, (30)

where I is the current intensity, d is the distance between
the two wires, ρ is the radius of each wire and x is the
distance of a buckyball with respect to the origin of the
axes. With the choice I = 0.6 A, d = 1 µm and ρ = 1 µm,
through a numerical computation, we obtain the magnetic
field distribution shown in Figure 4. We could not consider
a current greater than I = 0.6 A because the wires would
face a too high heating process, and eventually they could
be destroyed. On the other hand, we could not consider
currents smaller than 10−1 A, because the arising mag-
netic field gradient would be too small for each buckyball.
In this case, the resonance frequencies related to the buck-
yballs would differ for only few MHz, which could be a too
small gap to be realized by a frequency resonator.
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Fig. 4. Magnetic field generated by two 1 µm-radius wires at
a distance d = 1 µm, which carry a current I = 0.6 A. The two
buckyballs are placed at a symmetrical distance x with respect
to the origin of the axes.

5.2 Realization of the phase gate

Choosing a static magnetic field in the z-direction, the
Hamiltonian of the system is given by the following equa-
tion (� = 1)

H = J0σ̂1 · σ̂2 + g(r)[σ̂1 · σ̂2 − 3(σ̂1 · n)(σ̂2 · n)]
− µB[((Bz1 +Bg1)σ̂z1) ⊗ I2

+ I1 ⊗ ((Bz2 +Bg2)σ̂z2)], (31)

where J0 is the exchange spin-spin interaction cou-
pling constant, σ̂1 and σ̂2 are the Pauli spin matrices,
g(r) = γ1γ2

µ0µ2
B

8πr3 , where µ0 is the diamagnetic constant,
µB is the Bohr magneton and r is the distance between
the two trapped atoms, n is the unit vector in the direc-
tion of the line which joins the centers of the two encased
atoms, Bz1 = Bz2 is the static magnetic field in the z-
direction, Bg1 and Bg2 are the additional magnetic fields
due to the field gradient. We make an assumption, con-
sidering the trapped particles as electrons. Therefore the
gyromagnetic ratio γ � 2, and g(r) = µ0µ2

B

2πr3 . Through the
study of fullerenes’ spectra in ESR (Electron Spin Reso-
nance) experiments, and also through theoretical studies,
it has been shown [13,32,17], that the exchange interac-
tion is very small. Therefore, in equation (31), we can
neglect the exchange term proportional to J0, leaving the
spin dipole-dipole interaction as the leading term of the
mutual interaction between the two endohedrals. Choos-
ing the direction of vector n parallel to the x axis, the
dipole-dipole interaction term is simplified as follows

D̂ = g(r)(σ̂z1 σ̂z2 + σ̂y1 σ̂y2 − 2σ̂x1 σ̂x2). (32)

The Hamiltonian matrix form is given by the following
matrix
⎛
⎜⎜⎜⎝

g(r) +m1 0 0 −3g(r)
0 −g(r) +m2 −g(r) 0
0 −g(r) −g(r) −m2 0

−3g(r) 0 0 g(r) −m1

⎞
⎟⎟⎟⎠ , (33)

where
m1 = −µB(Bz1 +Bg1 +Bz2 +Bg2) (34)

and
m2 = −µB(Bz1 +Bg1 −Bz2 −Bg2), (35)

are the static magnetic field terms. Solving the
Schrödinger equation

ı
∂

∂t
|ψ(t)〉 = H |ψ(t)〉, (36)

where the wave function is a superposition of the standard
two-qubit computational basis, given by equation (17), we
get the four differential equation system

ċ1(t) = −ı[(g(r) +m1)c1(t) − 3g(r)c4(t)]; (37)
ċ2(t) = −ı[(−g(r) +m2)c2(t) − g(r)c3(t)]; (38)
ċ3(t) = −ı[−g(r)c2(t) + (−g(r) −m2)c3(t)]; (39)
ċ4(t) = −ı[−3g(r)c1(t) + (g(r) −m1)c4(t)], (40)

which allows us to evaluate the phases acquired by each
computational basis state during the time evolution. Ap-
plying equation (16) to the present time evolved phases,
we get the desirable π-gate

ϑ = Arg(c1(t)) −Arg(c2(t))
−Arg(c3(t)) + Arg(c4(t)) = ±π, (41)

where Arg(ci(t)), i = 1, ..., 4, which correspond to phases
φjl, j, l = 0, 1, in equation (16), are the phases of coeffi-
cients ci(t) of equation (17). We have numerically solved
the differential equation system (37–40), with the use
of a Mathematica programme. The numerical quantities
used for the numerical calculations are r = 1.14 nm,
Bz1 = Bz2 = 10 × 10−2 T, Bg1 = 6.08 × 10−5 T and
Bg2 = −6.08× 10−5 T, which give the resonance frequen-
cies ω1 = 1.7599 × 1010 Hz and ω2 = 1.7577 × 1010 Hz.
The time evolution of the phase ϑ is shown in Figure 5.
The gate time, which corresponds to the case ϑ = −π is
τ � 9.1 × 10−9 s. This result has been found for a cho-
sen set of initial conditions ci(0), i = 1, ..., 4. However,
we did many trials for different numerical values of the
set ci(0), i = 1, ..., 4. In all these cases, phase ϑ shows
a linear behavior and the resulting gate times are all in
the same range, which is of the order of 10−8 s. If the set
of initial conditions is real, the starting value of phase ϑ
is always equal to zero. If the set of initial conditions is
complex, the starting value of ϑ is in the range [−π,+π],
but it can always be rescaled to zero. The numerical value
of the distance between the two buckyballs, r, is a fixed
value, which depends on the substrate where the buck-
yballs reside. The amplitude of the static magnetic field
has been found by considering the allowed experimental
limits for its realization. The chosen value for this am-
plitude has been found by checking the response of the
system, i.e. the gate time, after some trials. Therefore, we
can say that the phase gate time depends on the distance
between the two buckyballs and on the amplitude of the
static magnetic field, but it is independent of the choice
of the initial values ci(0), i = 1, ..., 4.
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Fig. 5. Time evolution of the phase ϑ(t) in π−units, when
static magnetic fields oriented in the z direction are applied on
two buckyballs separated by a distance r = 1.14 nm. The total
magnetic field applied on each particle is Bzi + Bgi , i = 1, 2.
In this case we have chosen Bz1 = Bz2 = 10 × 10−2 T, Bg1 =
6.08 × 10−5 T and Bg2 = −6.08 × 10−5 T. The value ϑ = −π
is reached at the time τ � 9.1 × 10−9 s.

Fig. 6. Time evolution of the concurrence, C(ψ). In this case
the two buckyballs, separated by a distance r = 1.14 nm, are
subjected to static magnetic fields in the z-direction, whose
amplitude is Bzi + Bgi , i = 1, 2. The numerical values cho-
sen for these amplitudes are Bz1 = Bz2 = 10 × 10−2 T,
Bg1 = 6.08 × 10−5 T and Bg2 = −6.08 × 10−5 T.

If we compare the gate-time, τ , to the shortest deco-
herence time, T2 � 20 µm, we can deduce that it will
be theoretically possible to realize about thousands gate
operations before the system relaxes.

To know the fidelity of the gate and the reliability of
the results, we need to evaluate the concurrence during
the time evolution. With the use of a Mathematica pro-
gramme we have plotted the time evolution of the con-
currence, equation (29), from t = 0 s to the gate time
t = τ , see Figure 6. Analyzing picture (6), we can see
that the concurrence shows a smooth behavior. It mono-
tonically ranges from zero and its maximum is reached
at time t = τ , with the respective value C(ψ(τ)) = 0.88.
Even if the maximum concurrence does not coincides with
the ideal value 1, it is near to this value and the system
shows an acceptable degree of entanglement. It is conve-
nient to investigate other system configurations, in order
to check if it is possible to improve the concurrence. In

Fig. 7. Time evolution of the phase ϑ(t) in π−units, with
the respective gate time τ � 9.8 × 10−9 s. Here the two
buckyballs are separated by a distance r = 1.14 nm and
are subjected to static and time dependent magnetic fields.
The total applied magnetic field on each particle is B(t) =
(Bli cosωit,Bli cosωit, (Bzi + Bgi)), i = 1, 2. In the calcula-
tions we chose Bz1 = Bz2 = 10×10−2 T, Bg1 = 6.08×10−5 T,
Bg2 = −6.08 × 10−5 T, Bl1 = Bl2 = 5 × 10−4 T, ω1 =
1.7599 × 1010 Hz and ω2 = 1.7577 × 1010 Hz.

the next section we will analyze the case of an additional
magnetic field, oscillating in time in the x-y plane.

6 Phase gate: time dependent case

In this section, we apply to our system an additional time
dependent magnetic field. To induce the transitions be-
tween the two Zeeman energy levels, we need to apply
an oscillating magnetic field in the x-y plane with angular
frequency, ω, equal to the spin resonance frequency. In the
case of a transverse linear oscillating magnetic field, the
total applied magnetic field is given by

B(t) = (Bl cosωt,Bl cosωt, (Bz +Bg)). (42)

The Hamiltonian of the system reads

H = g(r)(σz1σz2 + σy1σy2 − 2σx1σx2)
− µB(Bz1 +Bg1)σz1 ⊗ I2

− µB(Bz2 +Bg2)I1 ⊗ σz2

− µBBl1(σx1 cosω1t+ σy1 cosω1t) ⊗ I2

+ I1 ⊗ (−µBBl2(σx2 cosω2t+ σy2 cosω2t)). (43)

Like in the time independent case, solving the Schrödinger
equation, we get a four differential equation system, whose
solution give the time evolution of the phase for each com-
putational basis state. Arranging the phases as prescribed
in equation (16), we have obtained the π-gate shown in
Figure 7, and the numerical value of the gate time is
τ � 9.8 × 10−9 s. In the numerical computation we have
used the additional quantity Bl1 = Bl2 = 5 × 10−4 T.
Also in this case, comparing the gate time, τ , to the de-
coherence time T2, we observe that it will be possible
to perform about thousands gate operations before the
system relaxes. The relevant result in the treatment of
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Fig. 8. Time evolution of the concurrence, C(ψ). In this
case, the total magnetic field applied on each buckyball
is B(t) = (Bli cosωit, Bli cosωit, (Bzi +Bgi)), i = 1, 2. The
choice of the numerical values is Bz1 = Bz2 = 10 × 10−2 T,
Bg1 = 6.08 × 10−5 T, Bg2 = −6.08 × 10−5 T, Bl1 = Bl2 =
5×10−4 T, ω1 = 1.7599 × 1010 Hz and ω2 = 1.7577×1010 Hz.

the time dependent case is the concurrence. In Figure 8,
it is represented the time evolution of the concurrence,
C(ψ(t)), which has been numerically evaluated with a
Mathematica programme. It shows a monotonic behavior
and its maximum, evaluated at time t = τ , corresponds
to C(ψ(τ)) = 0.96. Therefore, an additional linearly po-
larized oscillating field in the x-y plane allows the system
to be characterized by a better concurrence degree.

7 Conclusions

To model quantum gates we considered a system com-
posed by two endohedral fullerene molecules, subjected to
external magnetic fields. We assume that each molecule
may be treated as a 1/2-spin particle, where the spin is as-
sociated to the encapsulated atoms. In the magnetic field
the spin degeneracy of the spin up and down components
is lifted and it arises the Zeeman splitting. As the result,
there two two-level system are arising. Each of these two-
level systems corresponds to a single qubit. If the applied
static magnetic field to the whole sample is homogeneous,
each of these qubits will be characterized by the same
resonance frequency. This leads to the difficulty in the in-
dividual addressing of each single qubit. To overcome this
problem, we have to apply inhomogeneous magnetic fields.
In this paper we have used a magnetic field generated by
two metallic wires. Each wire is carrying a current, there-
fore the magnetic field is decreasing with the distance from
a wire. In the proposed configuration of two parallel wires,
there arises a gradient of the magnetic field when we are
moving from a wire to the other one. If we place two buck-
yballs in the space between these two wires, they will be
subjected to the gradient of this field, and therefore the
associated resonance frequencies of the related two-level
system are different. In this paper we have performed a
quantum π-phase gate. To realize this particular quantum
gate we have estimated the phase of each computational

basis state, see equation (16). The leading mutual inter-
action between the two qubits is the spin dipole-dipole
interaction. First we studied the time evolution of our sys-
tem taking into account this mutual interaction between
the qubits and considering the qubits subjected to static
magnetic fields only. Then we applied to the system also
time dependent magnetic fields. The wave function of the
system is given by the superposition of the four computa-
tional basis states, see equation (17). The time evolution of
the coefficients of each computational basis state is deter-
mined via the solution of the Schrödinger equation. With
the use of these coefficients and of equation (41), we can
evaluate the operational gate time for the π-phase gate.
Its numerical value is τ � 9.1 × 10−9 s for the time inde-
pendent case, and τ � 9.8×10−9 s for the time dependent
one. Comparing the gate time, τ , to the shortest relaxation
time, T2, we have observed that in both cases it will be
possible to perform about thousands quantum gate opera-
tions before the system decoheres. This is our main result.
As far as we are aware, this result indicates that our sys-
tem could be the most favorable for the realization of a
quantum gate. Obviously, for realistic models of quantum
computers, the ratio of the decoherence time and the op-
erational time must be very large, otherwise the system
relaxes before the completing of the quantum computa-
tion. The goal of any quantum computational proposal is
the entanglement of the state of the system under consid-
eration. At this purpose, we have studied the concurrence,
see Section 4. The concurrence gives information about the
entanglement of the state, therefore it is related to the reli-
ability of the gate operation. A maximally entangled state
is left unchanged under a spin-flip operation and its con-
currence is maximum. In our system, at the end of the
gate operation, the value of the concurrence is C � 0.88
in the time independent case, and C � 0.96 in the time
dependent one. Both values are acceptable because they
are both related to a very good degree of entanglement
for the state describing our system. We can conclude that
the best configuration for our system is the time depen-
dent one. It is characterized by a very small operational
time, in comparison to the relaxation times, and by the
best concurrence.

Many features claim the buckyball systems as good
candidates for performing quantum gates. Not only they
are characterized by very long decoherence times, but also
they can be maneuvered very easily. This feature allows
the realization of experimental quantum devices, which
form scalable architectures. For example, buckyballs can
be embedded in silicon surfaces or arranged in arrays en-
cased in a nanotube (peapod). Moreover, in such systems
we suppose that the value of the relaxation time T2, due to
random spin dipole-dipole interactions, could be reduced.
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